Wi-Fi indoor connectivity tests

March 2024

COMTEL

EU Digital Decade Policy Programme connectivity objectives for 2030

In Europe, administrations need to support the widespread deployment and take-up of very high-capacity networks to meet the ambitious connectivity objectives for the Union.

Article 4 – Digital Targets

"2) secure, resilient, performant and sustainable digital infrastructures, where:

(a) <u>all end users at a fixed location are covered by a gigabit network up to the</u> <u>network termination point</u>, and all populated areas are covered by next-generation wireless high-speed networks with performance at least equivalent to that of 5G, in accordance with the principle of technological neutrality;

Source: DECISION (EU) <u>2022/2481</u> OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 14 December 2022 establishing the Digital Decade Policy Programme 2030

Comtel Wi-Fi indoor connectivity tests

See report for full details of measurements

The key question:

• Is the **currently available Wi-Fi spectrum** an obstacle in meeting the following EU Digital Decade connectivity objective for 2030:

"... all end users at a fixed location are covered by a gigabit network up to the network termination point..."?

Approach:

- Assess the performance of latest Wi-Fi products' air interface @ 2.4, 5, Lower 6 GHz bands
- Replicate as much as possible the **dense urban apartment** and the **isolated house** scenarios
- Remove any possible bottlenecks for the fixed broadband network behind the Wi-Fi APs
- Generate sufficient traffic to and from each Wi-Fi STA/laptop using all available capacity of the APs
- Generate interference from a high density of Wi-Fi APs: beyond any realistic worst-case scenario

Comtel Wi-Fi indoor connectivity test setup

Wi-Fi deployment in 42 hotel rooms in 3 overlapping floors.

Wi-Fi Access Point (AP) O Wi-Fi Station (STA) / laptop

- 44 APs:
 - Up to 4 APs in 4 adjacent rooms in the middle of the middle (second) floor; the "Target apartment".
 - Up to 40 APs generating interference.
- 86 laptops.

• Traffic exchanged with each laptop:

- FTP: 1 Gbit/s (DL), 0.5 Gbit/s (UL).
- Additional 4K streaming and AR/VR for laptops in the target apartment.
- 40 Gbit/s FTP and streaming servers installed on each floor.

• 10 / 100 Gbit/s LAN

- 100 Gbit/s core switch.
- $\circ~$ Floor switches with 10 Gbit/s to APs.

Available channels across the 2.4, 5, L6 GHz bands

Wi-Fi channels used in the various rooms

Scenarios 1.1 – 1.5: isolated house/dwelling

က

Floor 0 0 0 0 0000 0 0 2 Floor 0 0 00 \circ \circ \circ 0 0 00 <u>_</u> Floor

Scenario 1.2

Scenario 1.3

Scenario 1.5

Scenarios 2.1 – 2.6: dense urban deployment

Scenario 2.4

Measured Wi-Fi STA

Interfering Wi-Fi STA

Target apartment

Measured Wi-Fi AP

Interfering Wi-Fi AP

Scenario 2.6

Page 8

Scenarios 3.1 – 3.3: dense urban deployment

Coverage-limited scenario (1/2)

Single AP serving one room

et	Room 203	Room 204
nent	STA 37, STA 38	STA 39, STA 40
Targ	Room 210	Room 209
apartr	STA 51, STA 52	STA 53, STA 54

Coverage-limited scenario (2/2)

Single AP serving four rooms

• Coverage-limited scenario:

STAs that were located further away from the AP drained a disproportionate amount of radio resource from the AP (e.g. due to their need to adopt a lower-order modulation scheme) leading to a 29% through reduction when moving from Scenario 1.1 to 1.2.

Interference footprint in the target apartment – Scenario 3.3

Dense urban apartment environment

2.4 GHz band: ch. 6 interference from floors 1, 2, 3 (AP in room 204 switched off) to floor 2

5 GHz band: ch. 58 interference from floors 1, 2, 3 (AP in room 209 switched off) to floor 2

L6 GHz band: ch. 15 interference from floors 1, 2, 3 (AP in room 203 switched off) to floor 2

14 visible co-channel APs from rooms:

- 103, 116, 120, 123, 126
- 208, 211, F2_ad. F2_sud

301, 306, 309,
 F3_void, F3_rip_2

12 visible co-channel APs from rooms:

- 103, 116, 120. 122, 126
- 201, 202, 206
- 302, 305, 307, 310

13 visible co-channel APs from rooms:

- 101, 115, 119, 121, 124
- 201, 206, 209 (*)
- F3_wc, 302, 305, 307, 310

(*) Room 209 belongs to the target apartment

- The measured L6 GHz interference footprint associated is significantly smaller than the 2.4 GHz interference footprint due to the better propagation at lower frequencies.
- The measured L6 GHz interference
 footprint is greater than for the
 5 GHz band due to the fewer
 channels available at L6 GHz
 compared with 5 GHz
 (3 vs. 4), which means that the
 measured channel is reused by a
 greater number of APs in close
 proximity to and even inside the
 target apartment
- However, reuse of 3 allowed the use of larger 160 MHz channels which led to significant throughput and spectral efficiency in the L6 GHz band

-80 dBm / (20 MHz) -55 dBm / (20 MHz)

-30 dBm / (20 MHz)

Results summary – UL + DL throughput (5 and L6 GHz)

REMARKS:

L) Coverage-driven:

The STAs/laptops that are further away from the AP drain capacity from the AP (e.g. lower modulation).

2) The number of target APs grows from 1 to 4.

(*) Combined uplink and downlink throughput accounting for the contribution of all STAs (and APs) in the target apartment or house/dwelling.

(**) Traffic exchanged with each laptop: FTP: 1 Gbit/s (DL), 0.5 Gbit/s (UL), additional 4K streaming and AR/VR for laptops in the target apartment.

Results summary – UL + DL throughput (5 and L6 GHz)

 X_A / Y_A : # APs / # STAs interfering from **3rd floor**

REMARKS:

- The number of interfering APs grows (1)from 4 to 10.
- From closest interfering APs in the (2) same floor to closest interfering APs from other floors.
- As the number of interfering APs (3) grows, the interference also limits the interfering APs' access to the shared channel.
 - The number of interfering APs grows
- (4) from 18 to 40. The number of target APs drops from 4 to 2.
- The number of target APs grows (5) from 2 to 4.

(*) Combined uplink and downlink throughput accounting for the contribution of all STAs (and APs) in the target apartment or house/dwelling.

(**) Traffic exchanged with each laptop: FTP: 1 Gbit/s (DL), 0.5 Gbit/s (UL), additional 4K streaming and AR/VR for laptops in the target apartment.

Results: AP densification – isolated house/dwelling

		Scenario	Scenario	Scenario	Scenario	Scenario	
		1.1	1.2	1.3	1.4	1.5	
# APs / # STAs	In the target apartment	1/2	1/8	2/8	3/8	4/8	
	Interfering from 1st floor	0/0	0/0	0/0	0/0	0/0	
	Interfering from 2nd floor	0/0	0/0	0/0	0/0	0/0	
	Interfering from 2 nd floor (corridor)	0/0	0/0	2 / 2	2 / 2	2 / 2	
	Interfering from 3rd floor	0/0	0/0	0/0	0/0	0/0	
		Throughput (Mbit/s)					
5 GHz (4 x 80 MHz)		452	250	529	1,133	1,677	
L6 GHz (3 x 160 MHz)		1080	838	1,210	3,005	4,582	
	Total	1,532	1,087	1,739	4,138	6,259	

+60% +137% +51%

Results: AP densification – dense urban apartment

Scenario 3.1	Scenario 3.2	Scenario 3.3		
Loo 3	Floor 3	Loor 3		
Floor 2	Floor 2	Floor 2		
Floor	Floor 1	Floor 1		

		Scenario	Scenario	Scenario	
		3.1	3.2	3.3	
# APs / # STAs	In the target apartment	2/8	3/8	4 / 8	
	Interfering from 1 st floor	15 / 30	15 / 30	15 / 30	
	Interfering from 2nd floor	8 / 16	8 / 16	8/16	
	Interfering from 2 nd floor (corridor)	2/2	2/2	2/2	
	Interfering from 3rd floor	15 / 30	15 / 30	15 / 30	
5 GHz (4 x 80 MHz)		529	1,021	1,429	
		Throughput (Mbit/s)			
L6 GHz (3 x 160 MHz)		1,191	1,423	3,116	
Total		1,720	2,445	4,544	
+42% +86%					

Discussion of key features of the field tests

Conservative features

- Measurements were performed in the rooms subjected to highest interference
 - Interference was generated from a **high density of APs** which is not observed in residential scenarios today, and is also considered unlikely in the future.
 - All APs operated at **maximum power no power coordination** between APs was implemented.
 - Measurements were made in the **middle rooms** of the middle floor (subject to greatest interference).
 - APs' emissions were **directed towards** the **target apartment**.
 - All **doors were left open** in all rooms thereby enhancing the propagation of interference among different rooms.
 - **Two extra APs** were added in the corridor of the target apartment generating extra interference . (their traffic was not considered within the measurements of the throughput in the target apartment)
- High traffic load
 - 1 Gbit/s (500 Mbit/s) FTP traffic in DL (UL) was exchanged between all 44 APs and the served 86 STAs: not expected to happen in real-world apartments in the foreseeable future, but helped to stress test the capability of the Wi-Fi air-interface.
 - The 8 STAs in the target apartment were also served with **4K video streaming traffic**: more than what would be expected in residential scenarios in the short- to medium-term future.
 - The hotel was equipped with a 100 Gbit/s wired LAN, with **10 Gbit/s Ethernet connectivity to each AP**.
- Wi-Fi 7 features could not be exploited (e.g. the higher modulation and the multilink operation MLO)

"Optimistic" features

• Advanced APs were used (Huawei AirEngine 8771-X1T)

Key learnings (1/2)

- The L6 GHz band (5945-6425 MHz) provides an important contribution to the performance delivered by Wi-Fi under scenarios of extreme network traffic and interference.
- Indoor radio propagation for the <u>5 GHz and L6 GHz</u> bands as <u>compared</u> with the <u>2.4 GHz</u> band:
 - Propagation across walls becomes more problematic in areas of an apartment that are further away from the AP, leading to a **more coverage-limited** environment.
 - In a dense urban apartment, the **measured interference** received from co-channel APs outside the apartment **reduces but is non-negligible.**
- The hotel was equipped with a 100 Gbit/s wired local area network (LAN), with 10 Gbit/s Ethernet connectivity to each AP. This forward-looking arrangement should be viewed in the context of the status of fixed broadband deployments in the European Union today and in the future (*).

(*) According to the Digital Economy and Society Index (DESI) 2023 indicators:

- 55% of households in the European Union had a fixed broadband subscription with a nominal speed of at least 100 Mbit/s in 2023, and
- 14% of households had a fixed broadband subscription of at least 1 Gbit/s in the same year.

Key learnings (2/2)

- Using the available spectrum from 2.4, 5, and L6 GHz bands, a throughput of <u>at least 1 Gbit/s</u> recorded in the target apartment in <u>all tested scenarios (uplink + downlink over all stations)</u>.
 - This seems to be consistent with the European Union Digital Decade Policy Programme connectivity objectives for 2030 for all end users at a fixed locations.

Throughput recorded in the *isolated "target apartment"* (house/dwelling scenario):

- ca. **1.5 Gbit/s** (2 STAs/laptops and 1 AP / target apartment, with no external interference)
- ca. 6.3 Gbit/s (8 STAs/laptops and 4 APs / target apartment, with no external interference)

Throughput recorded in the "target apartment" when severely interfered (dense urban apartment):

- ca. 1.7 Gbit/s (2 STAs/laptops and 2 APs / target apartment, with 42 interfering APs)
- ca. 4.5 Gbit/s (8 STAs/laptops and 4 APs / target apartment, with 42 interfering APs)
- Going forward...
 - The key constraint for Wi-Fi is coverage which can be effectivity addressed through **densification** of access points.
 - Once AP densification is applied, new RLAN technologies (e.g. Wi-Fi 8) will have the opportunity to exploit the large bandwidth available at higher frequency bands (such as mmWaves) to deliver higher throughput with lower latency, and in an interference-free manner (exploiting the higher wall penetration losses at high bands).
 - More efforts are needed to **extend high capacity fiber availability** for residential users and businesses.

Website WWW.COMTELITALIA.IT

Contacts HEADQUARTERS Via Vittor Pisani, 10 - 20124 Milano (MI) +39 02 2052781 +39 800 200 960 info@comtelitalia.it

Davide Ferrari Cloud & IT Transformation and Cyber Security Practice Manager

+39 366 563 1188 davide.ferrari@comtelitalia.it

